Back

torch.nn.parameter.Parameter分析

torch.nn.parameter.Parameter

作用

a kind of Tensor that is to be considered a module parameter.

Parameter是一种可以作为模型参数的Tensor.

Parameters are Tensor subclasses, that have a very special property when used with Module S —-when they’re assigned as Module attributes they are automatically added to the list of its parameters, and will appear e.g. in parameters() iterator. Assigning a Tensor doesn’t have such effect.

Parameter是Tensor的子类,同时拥有一种非常特殊的性质:当他们与Module S一起使用时,也就是说当它们作为Module参数进行使用时,它们会自动添加到Module的参数列表中,并且出现在parameters()迭代器里。(这样就可以自动计算梯度等)

构造参数

  • data(Tensor)– parameter tensor
  • requires_grad(bool, optional)– if the parameter requires gradient. Default: True.

Example

定义一个网络Module如下:

class LayerNorm(nn.Module):
    def __init__(self, features, eps=1e-6):
        super(LayerNorm, self).__init__()
        self.a_2 = nn.Parameter(torch.ones(features))
        self.b_2 = nn.Parameter(torch.zeros(features))
        self.eps = eps
    
    def forward(self, x):
        mean = x.mean(-1, keepdim=True)
        std = x.std(-1, keepdim=True)
        return self.a_2 * (x - mean) / (std + self.eps) + self.b_2

那么,我们试着构造一个LayerNorm,来观察其参数:

>>> layerNorm = LayerNorm(5)
>>> for a in layerNorm.parameters():
        print(a)
Parameter containing:
tensor([1., 1., 1., 1., 1.], requires_grad=True)
Parameter containing:
tensor([0., 0., 0., 0., 0.], requires_grad=True)

可以看到我们使用nn.Parameter进行构造的参数,自动传入了Module的参数列表。

Licensed under CC BY-NC-SA 4.0
comments powered by Disqus
Built with Hugo
Theme Stack designed by Jimmy